

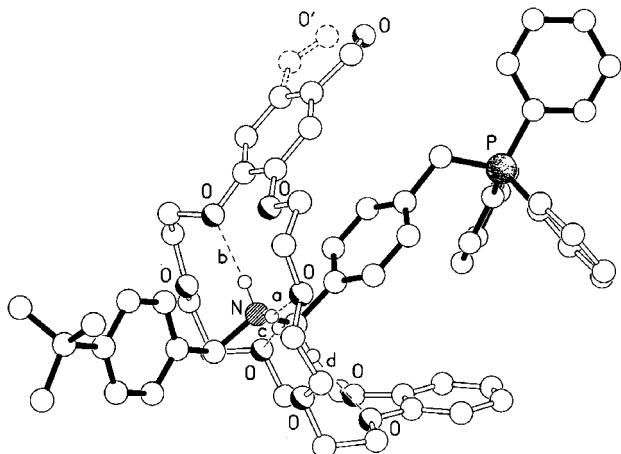
ORGANIC LETTERS

Toward Daisy Chain Polymers: ‘Wittig Exchange’ of Stoppers in [2]Rotaxane Monomers

Stuart J. Rowan, Stuart J. Cantrill, J. Fraser Stoddart, Andrew J. P. White and David J. Williams

SUPPORTING INFORMATION (20 PAGES)

EXPERIMENTAL PROCEDURES FOR **7**-H·2PF₆ AND **8**-H·2PF₆


CYCLIZATION PROTOCOL FOR **8-H·2PF₆**

¹H NMR, ¹³C NMR AND FAB-MS FOR 7-H·2PF₆ AND 8-H·2PF₆

FAB-MS OF THE MIXTURE OBTAINED UPON CYCLIZATION OF $7\text{-H}\cdot 2\text{PF}_6$

¹H NMR AND FAB-MS FOR **9**-H·2PF₆ AND **10**-H₂·2PF₆

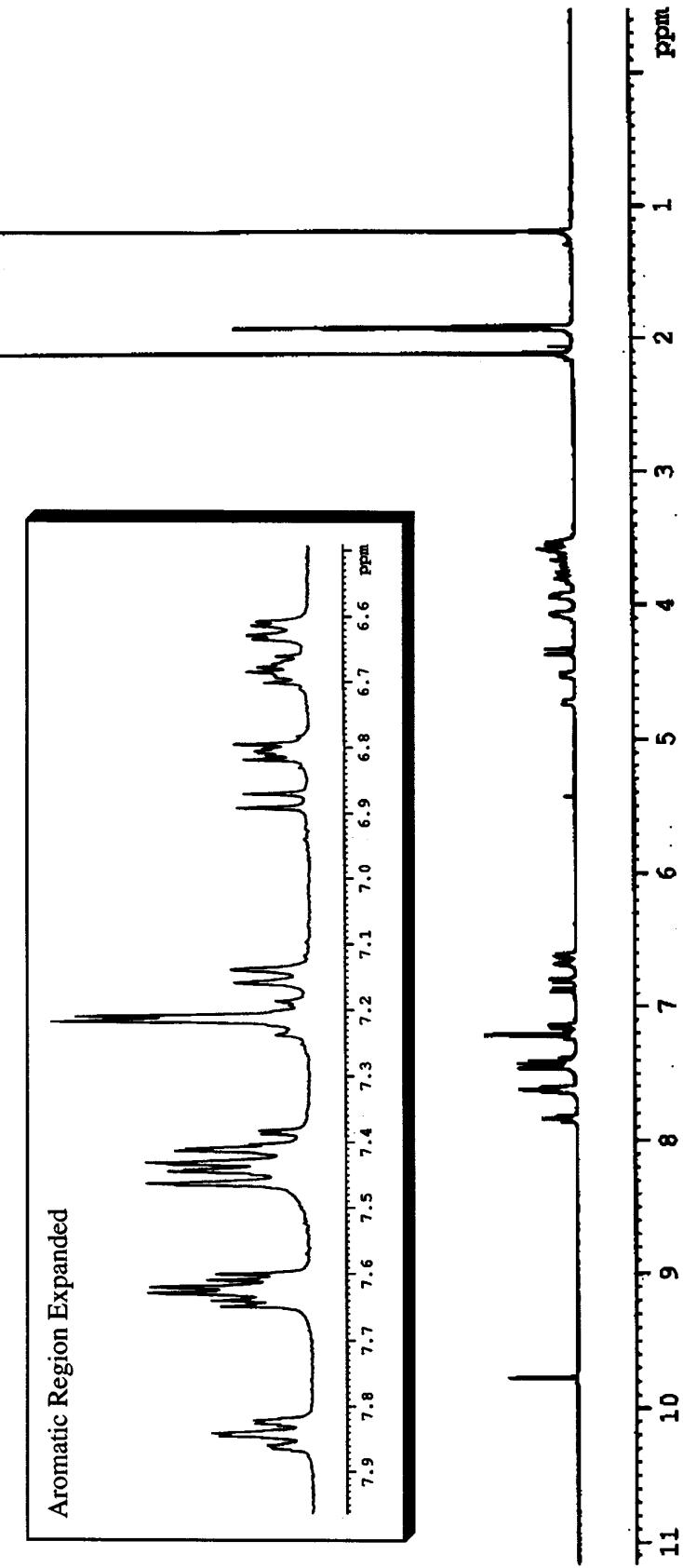
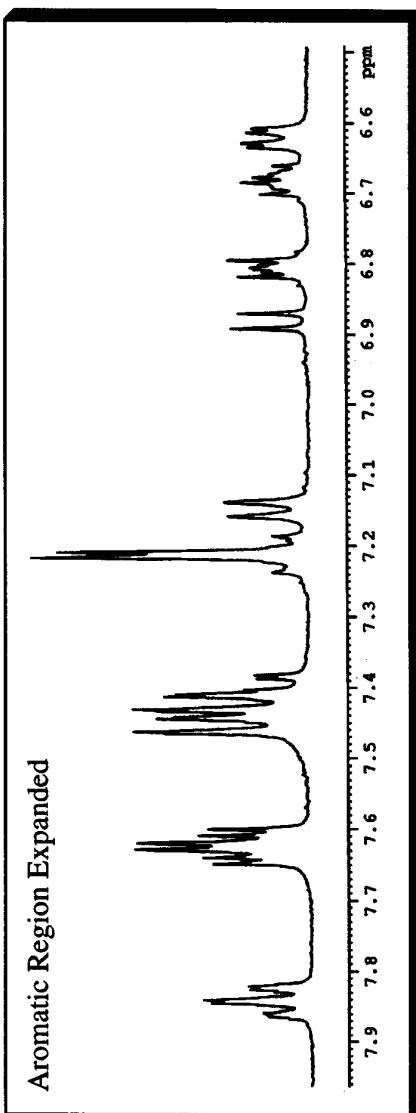
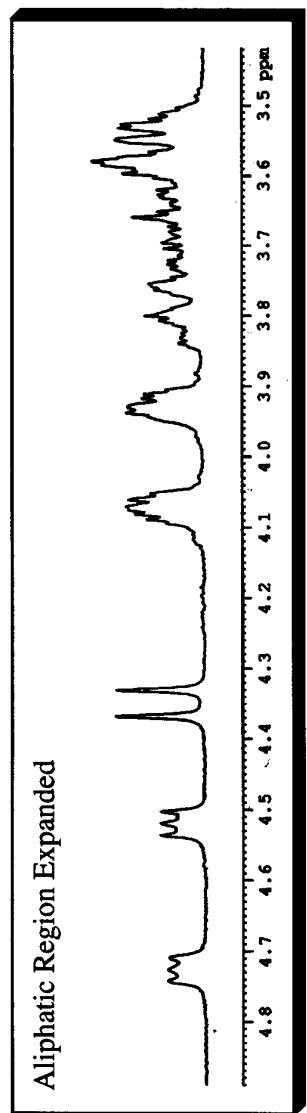
CRYSTAL DATA FOR 7-H·2PF₆

Experimental Section

7-H·2PF₆

Triphenylphosphine (144 mg, 5.5 x 10⁻⁴ mol) was added to a solution of the (*p*-*t*-butylbenzyl bromomethylbenzyl)ammonium hexafluorophosphate salt **3**-H·PF₆ (135 mg, 2.7 x 10⁻⁴ mol) and formyl-DB24C8 **5** (261 mg, 5.5 x 10⁻⁴ mol) in CH₂Cl₂ (2.7 ml) and this solution was left to stir overnight. Et₂O was added to the reaction mixture and the resulting white precipitate filtered and washed with more Et₂O. This solid was dissolved in MeCN and aqueous NH₄PF₆ was added. The MeCN was then removed *in vacuo* and the resulting solid was collected and washed with water. Further purification was carried out by flash chromatography (SiO₂) with CH₂Cl₂/MeOH (100:0, 99:1,..., 95:5), yielding the [2]rotaxane **7**-H·2PF₆ as a white solid (234 mg, 52 %). ¹H NMR (400 MHz, CD₃CN) δ = 9.77 (s, 1H), 7.82-7.87 (m, 3H), 7.61-7.65 (m, 6H), 7.38-7.49 (m, 8H), 7.18-7.25 (m, 4H), 7.10 (d, *J* = 8 Hz, 2H), 6.88 (d, *J* = 8 Hz, 2H), 6.81 (m, 2H), 6.67 (m, 2H), 6.61 (dd, *J* = 2.4, 8 Hz, 2H), 4.73 (m, 2H), 4.51 (m, 2H), 4.34 (d, *J* = 14.8 Hz, 2H), 4.07 (m, 4H), 3.91 (m, 4H), 3.50-3.85 (m, 16H), 1.19 (s, 9H); ¹³C NMR (100 MHz, CD₃CN) δ = 191.0, 152.7, 152.3, 148.0, 147.0, 135.3 (*J*_{PC} = 3 Hz), 134.0 (*J*_{PC} = 9.7 Hz), 132.9 (*J*_{PC} = 3.8 Hz), 131.0 (*J*_{PC} = 5.4 Hz), 130.3, 130.2 (*J*_{PC} = 12.5 Hz), 129.7 (*J*_{PC} = 3.3 Hz), 129.1, 128.6, 127.7 (*J*_{PC} = 8.3 Hz), 126.3, 125.5, 121.2, 117.3 (*J*_{PC} = 85.7 Hz), 112.1, 111.9, 110.0, 70.7, 70.6, 70.5, 70.0, 69.9, 69.8, 68.4, 68.1, 67.7, 67.6 52.2, 51.6, 34.2, 30.4, 29.3 (*J*_{PC} = 48.2 Hz); MS (FAB) 1150.5 [M-PF₆]⁺, 1004.5 [M-2PF₆]⁺.

8-H·2PF₆

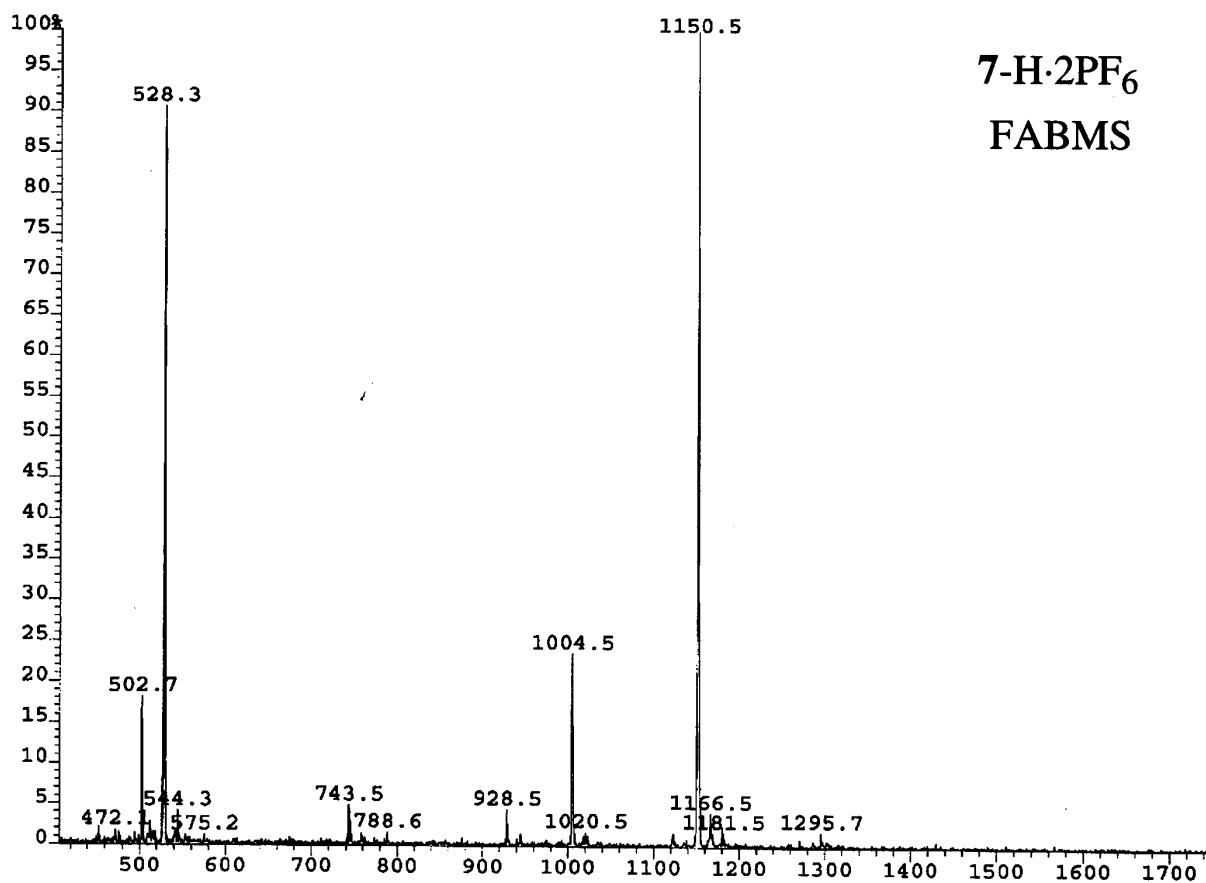
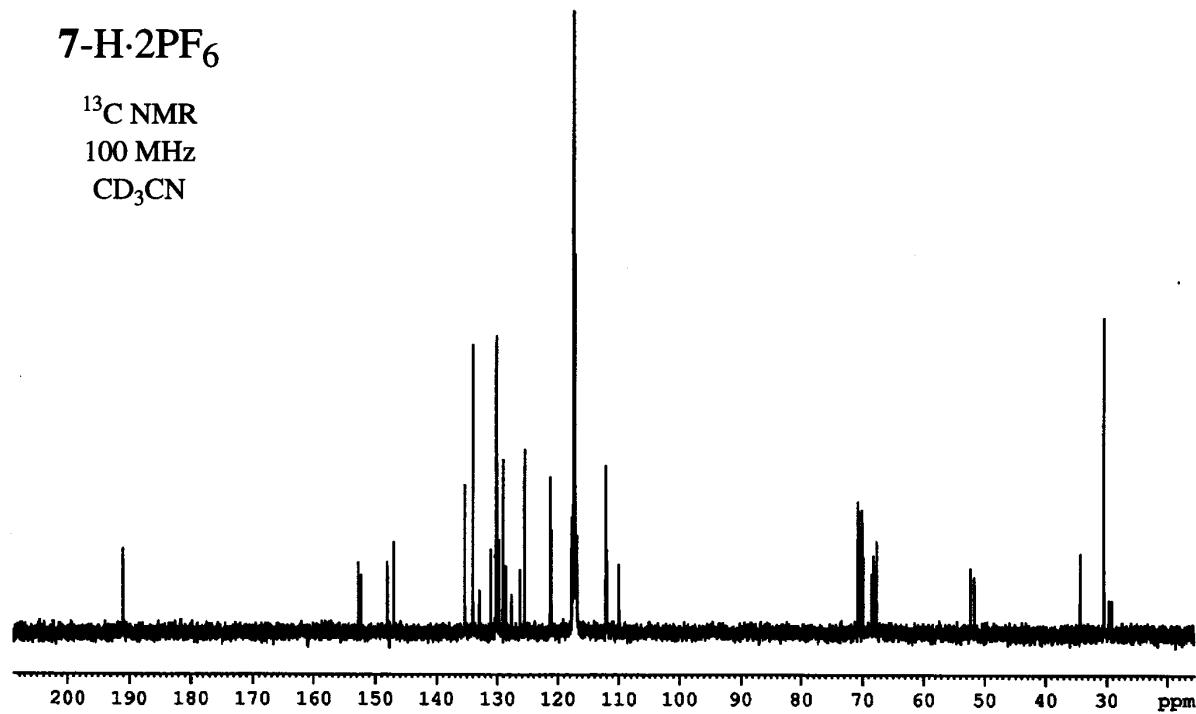



Triphenylphosphine (392 mg, 1.5 mmol) was added to a solution of the 3,5-di-*t*-butylbenzylbromomethylbenzyl)ammonium hexafluorophosphate salt **4**-H·PF₆ (410 mg, 7.5 x 10⁻⁴ mol) and formyl-BMP25C8 **6** (534 mg, 1.1 mmol) in CH₂Cl₂ (7.5 mL) and the reaction was then left to stir at room temperature overnight. Further CH₂Cl₂ was added and the solution washed with saturated aqueous NH₄PF₆. The organic layer was collected and the solvent removed. The resulting solid was purified by flash chromatography with CH₂Cl₂/MeOH (100:0, 99:1,...,90:0) and recrystallized from CH₂Cl₂/Et₂O to yield the [2]rotaxane **8**-H·2PF₆ as a white crystalline solid (98 mg, 10 %). ¹H NMR (400 MHz, CD₃CN) δ = 9.82 (s, 1H), 7.83-7.87 (m, 5H), 7.59-7.66 (m, 6H), 7.45-7.50 (m, 7H), 7.31 (d, *J* = 2 Hz, 2H), 7.12 (d, *J* = 8 Hz, 2H), 7.05 (d, *J* = 2 Hz), 6.84-6.91 (m, 2H), 6.74 (t, *J* = 2 Hz, 1H), 6.59-6.67 (m, 4H), 4.43 (m, 2H), 4.37 (m, 2H), 4.36 (d, *J* = 14.8 Hz, 2H), 4.10-4.24 (m, 4H), 3.35-3.95 (m, 20H), 1.20 (s, 18H); ¹³C NMR (100 MHz, CD₃CN) δ = 192.0, 160.4, 151.7, 146.0, 139.0, 135.4 (*J*_{PC} = 3 Hz), 134.0 (*J*_{PC} = 9.7 Hz), 131.5 (*J*_{PC} = 3.8 Hz), 131.0 (*J*_{PC} = 5.4 Hz), 130.5, 130.3 (*J*_{PC} = 3.3 Hz), 130.1 (*J*_{PC} = 12.5 Hz), 128.4 (*J*_{PC} = 8.4 Hz), 124.0, 123.7, 121.5, 117.2 (*J*_{PC} = 85.7 Hz), 112.0, 109.4, 108.3, 71.0, 70.2, 70.3, 69.0, 68.1, 67.8, 52.8, 51.7, 34.6, 30.5, 29.4 (*J*_{PC} = 48.1 Hz); MS (FAB) 1206.4 [M-PF₆]⁺, 1060.5 [M-2PF₆]⁺.

Cyclization of **8**-H·2PF₆

NaH (7 mg, 2.9 x 10⁻⁴ mol) was added to a solution of the **8**-H·2PF₆ (75 mg, 5.55 x 10⁻⁵ mol) and the reaction was left to stir for 2 days at room temperature. The reaction mixture was then neutralized with HCl (1N) and the product extracted into CH₂Cl₂. The solvent was removed *in vacuo* and the resulting material was dissolved in MeCN and added to aqueous NH₄PF₆. Upon removal of the MeCN and filtration of the resulting precipitate, ¹H NMR spectroscopic analysis revealed the presence of peaks corresponding to aldehydic protons and so the reaction mixture was resubmitted to the above reaction conditions and purified as before. After the second anion exchange the solid was dissolved in a small amount of CH₂Cl₂ and precipitated with Et₂O. This suspension was filtered and both the solid and liquid collected. The solid (50 %) was shown to contain cyclic dimers (FAB-MS: 1709 [M-PF₆]⁺, 2346 [M-2PF₆]⁺) and a small amount of cyclic trimers (FAB-MS: 2491 [M-2PF₆]⁺, 2346 [M-3PF₆]⁺). The Et₂O fraction was purified by precipitation with MeOH followed by flash chromatography on SiO₂ with CH₂Cl₂/MeOH (100:0, 99:1, ..., 90:10), affording two products. The first product was shown to be the cyclic dimer **10**-H₂·2PF₆ (5 mg, 10 %). ¹H NMR (CD₃CN, 400 MHz) δ = 7.82 (br s, 2H), 7.51 (t, *J* = 2 Hz, 1H), 7.39 (d, *J* = 2 Hz, 2H), 6.98 (AA' of AA'BB', *J* = 8 Hz, 2H), 6.92 (BB' of AA'BB', *J* = 8 Hz, 2H), 6.86-6.91 (m, 4H), 6.42-6.50 (m, 3H), 6.30 (d, *J* = 2 Hz, 2H), 4.51 (m, 2H), 4.35 (m, 2H), 3.98-4.12 (m, 6H), 3.74-3.79 (m, 2H), 3.42-3.70 (m, 16H), 1.24 (s, 18H); ¹³C NMR (CD₃CN, 100 MHz) δ = 159.5, 151.7, 147.8, 146.7, 139.6, 138.1, 136.2, 130.7, 130.6, 129.9, 129.8, 129.3, 128.9, 124.2, 124.1, 121.6, 112.5, 108.1, 102.2, 70.8, 70.3, 69.7, 69.5, 68.1, 67.7, 53.2, 52.1, 34.6, 30.6; MS (FAB) 1562.6 [M-2PF₆]⁺, 782.2 [M-2PF₆]²⁺. The second product that was eluted from the column was the linear monomer **9**-H·PF₆ (17 mg, 33 %). ¹H NMR (CD₃CN, 400 MHz) δ = 7.35 (t, *J* = 2 Hz, 1H), 7.21 (AA' of AA'BB', *J* = 8 Hz, 2H), 7.18 (BB' of AA'BB', *J* = 8 Hz, 2H), 7.17 (d, *J* = 2 Hz, 2H), 6.91 (m, 2H), 6.86 (m, 2H), 6.60 (A of AB, *J* = 12 Hz, 1H), 6.54 (B of AB, *J* = 12 Hz, 1H), 6.44 (t, *J* = 2 Hz, 1H), 6.34 (d, *J* = 2 Hz, 2H), 4.04 (m, 4H), 3.94 (m, 4H), 3.70-3.74 (m, 8H), 3.55-3.62 (m, 12H), 1.34 (s, 18H); ¹³C NMR (CD₃CN, 100 MHz) δ = 159.8, 150.8, 148.6, 147.8, 139.2, 138.5, 136.2, 130.4, 130.0, 129.1, 128.8, 128.4, 122.6, 121.2, 121.1 114.1, 107.9, 101.8, 70.5, 70.4, 69.4, 69.2, 68.2, 67.7, 52.9, 52.2, 34.5, 30.7; MS (FAB) 782.5 [M-PF₆]⁺.

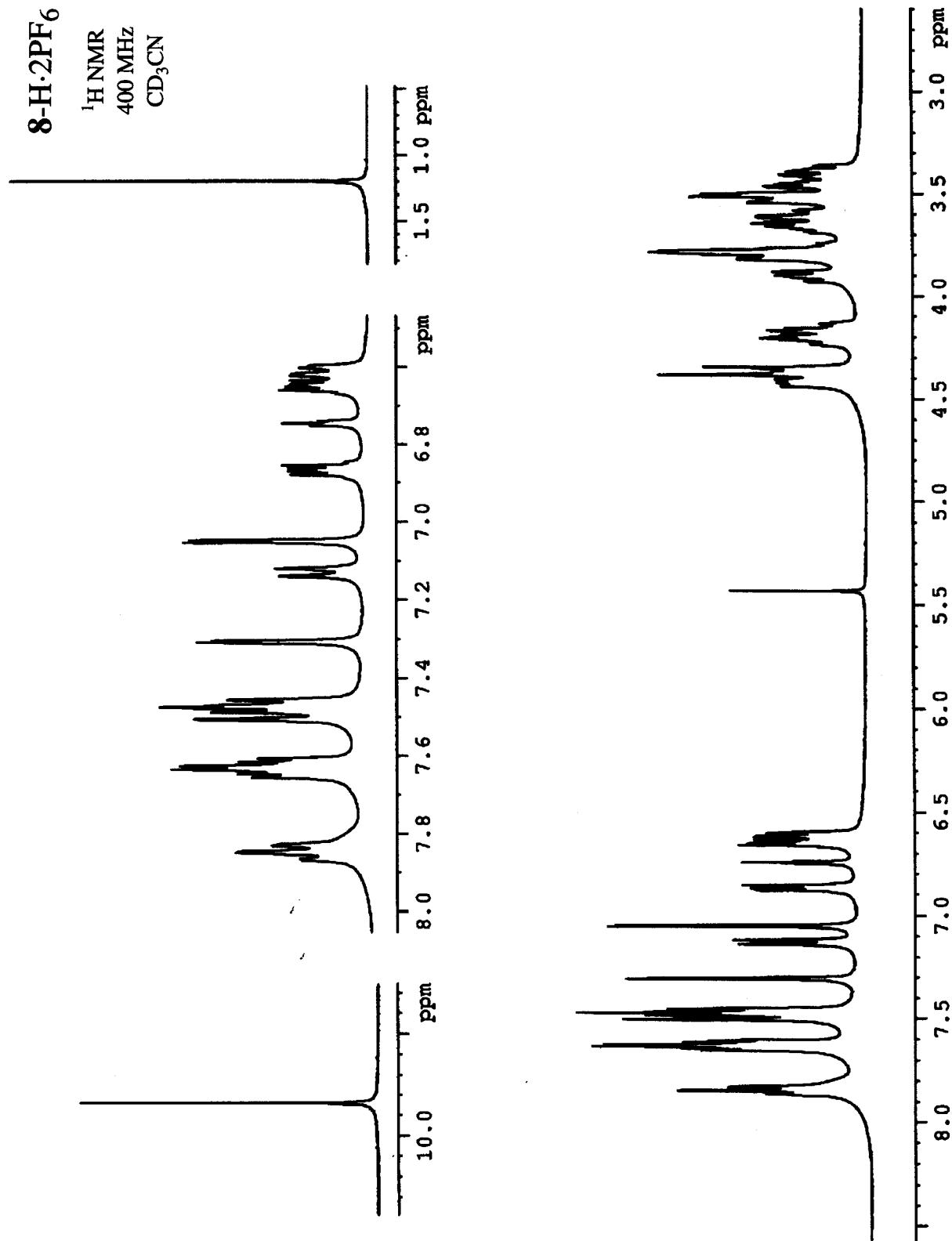
7-H·2PF₆

¹H NMR
400 MHz
CD₃CN

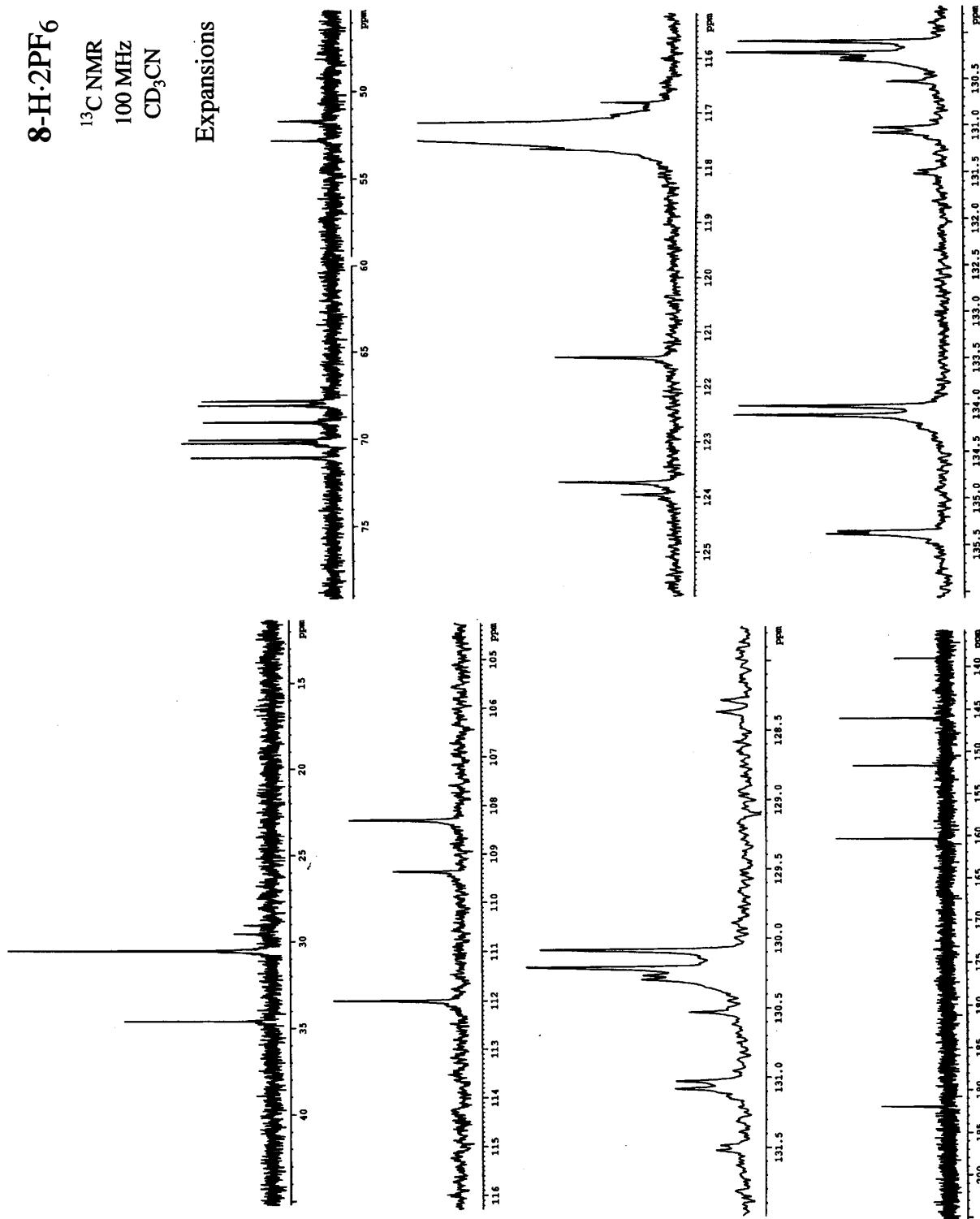
7-H·2PF₆

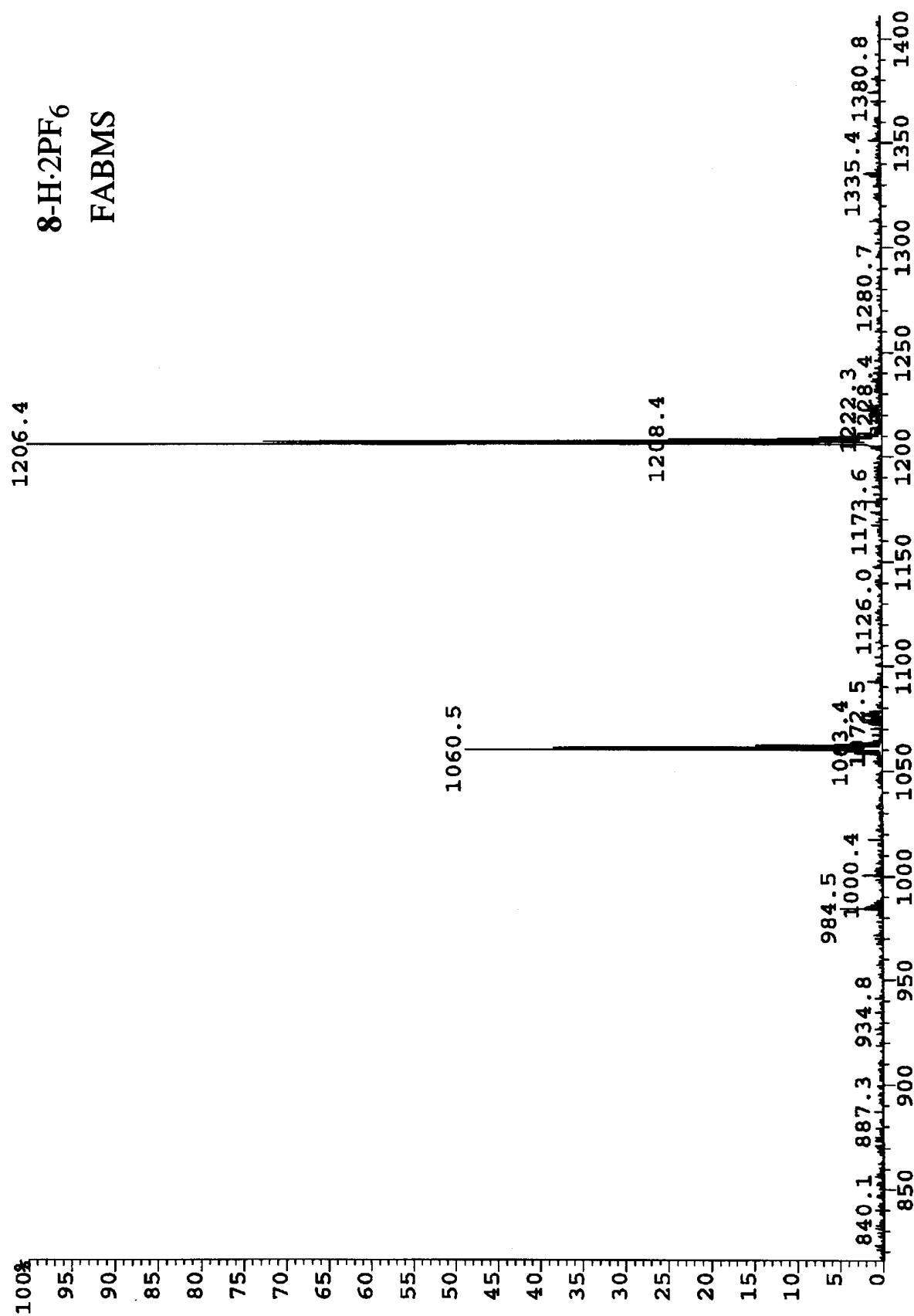
¹³C NMR

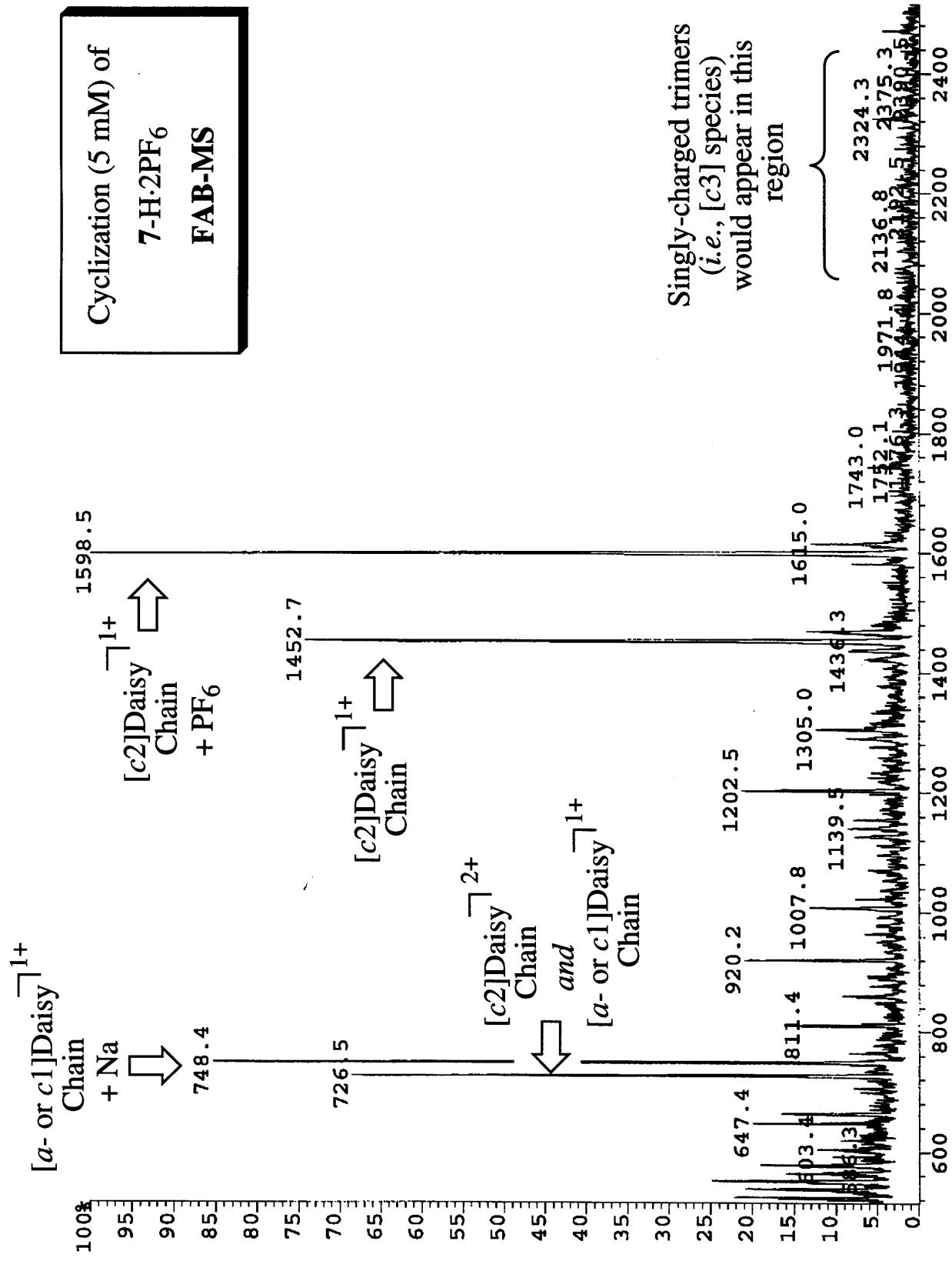

100 MHz

CD₃CN

8-H·2PF₆

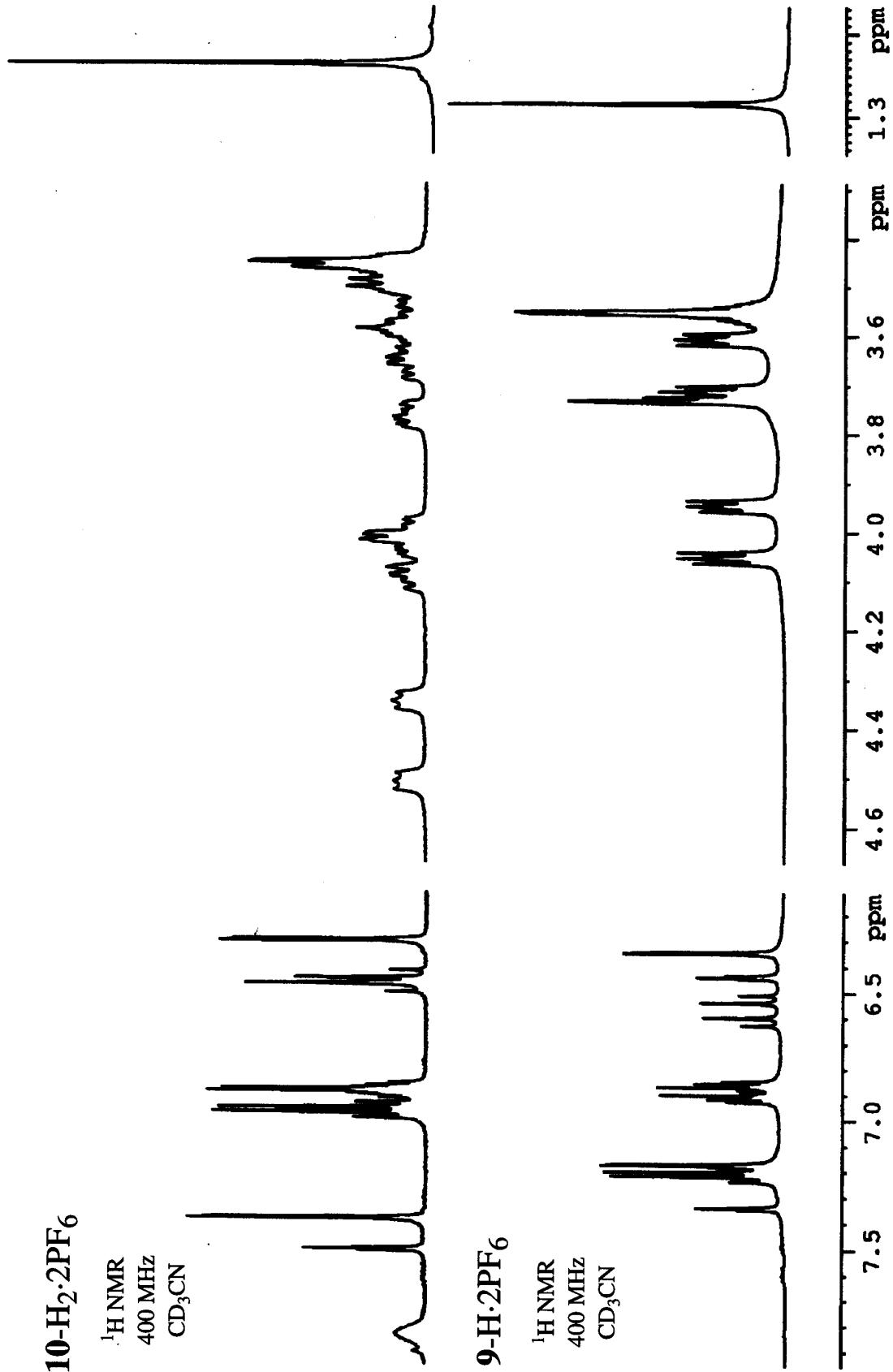

¹H NMR
400 MHz
CD₃CN

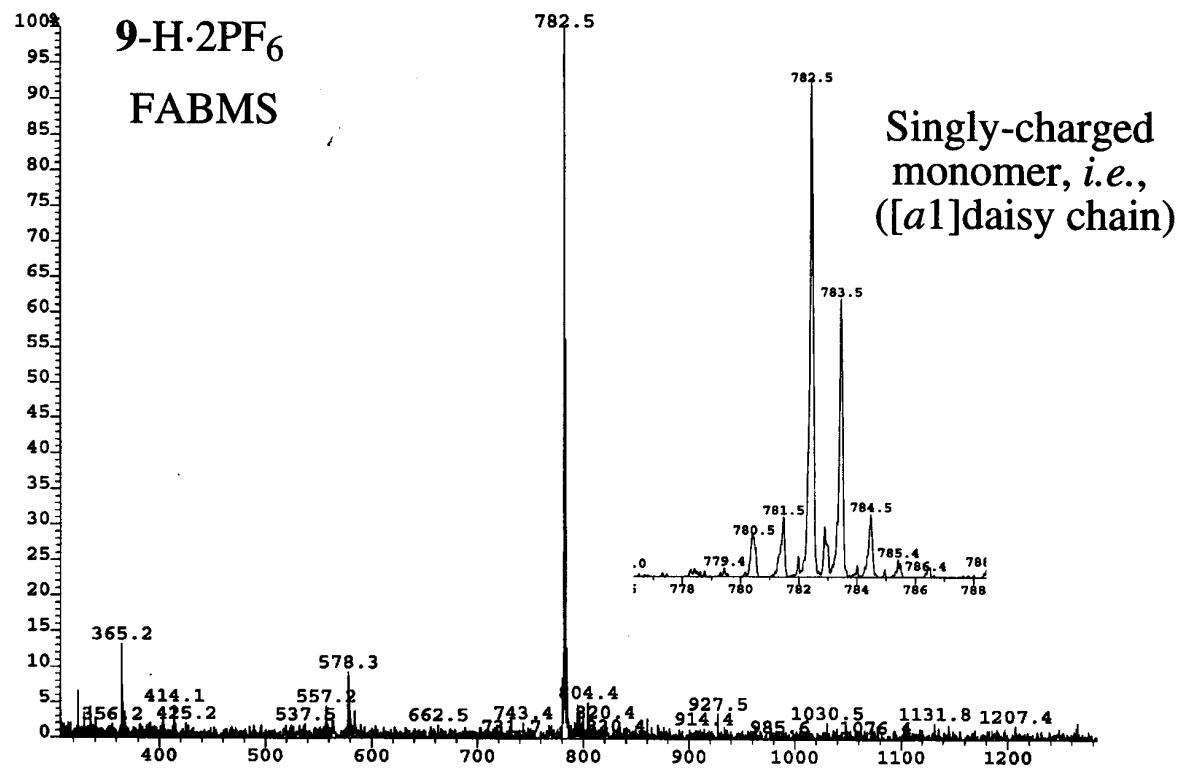
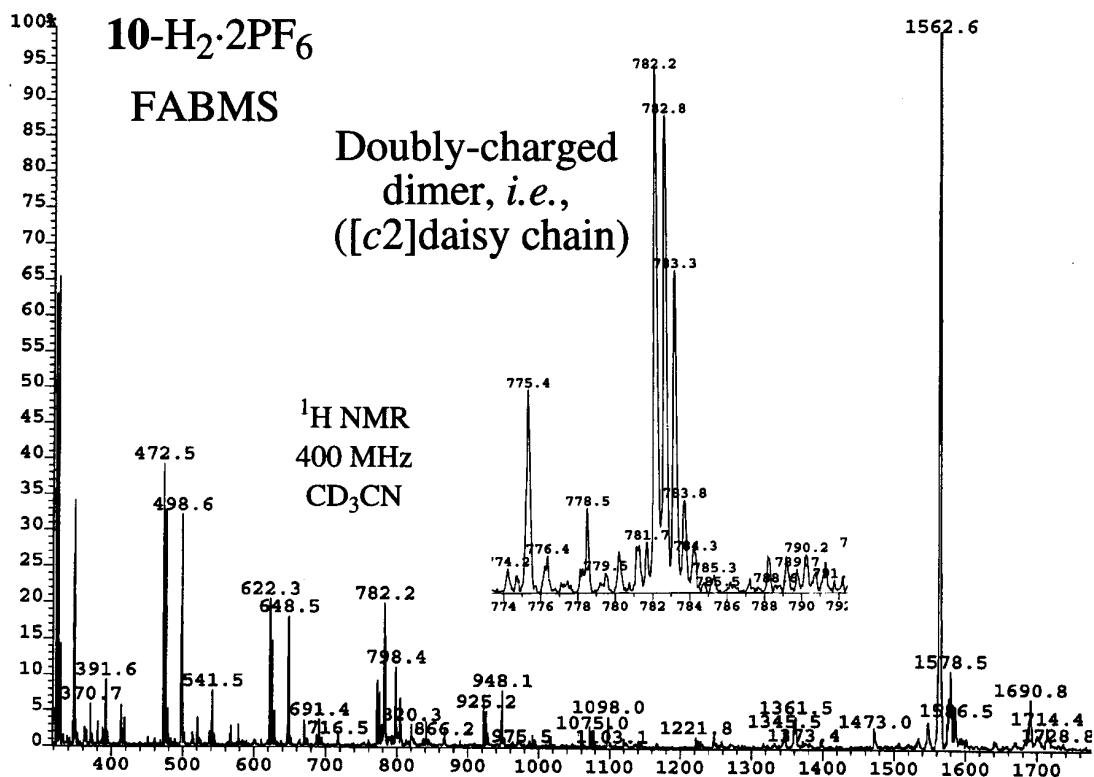



8-H·2PF₆

¹³C NMR
100 MHz
CD₃CN

Expansions



10-H₂·2PF₆

¹H NMR
400 MHz
CD₃CN

Table 1. Crystal data and structure refinement for 7-H·2PF₆

Identification code	FS9909
Empirical formula	[C ₆₂ H ₇₂ NO ₉ P][PF ₆] ₂ · 0.25H ₂ O
Formula weight	1300.62
Temperature	293(2) K
Diffractometer Used	Siemens P4/RA
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	P $\bar{1}$
Unit cell dimensions	$a = 10.6321(10)$ Å $\alpha = 81.826(8)^\circ$ $b = 14.913(2)$ Å $\beta = 82.964(7)^\circ$ $c = 21.145(2)$ Å $\gamma = 80.729(9)^\circ$
Volume, Z	3258.1(6) Å ³ , 2
Density (calculated)	1.326 Mg/m ³
Absorption coefficient	1.610 mm ⁻¹
F(000)	1357
Crystal colour/morphology	Clear blocky prisms
Crystal size	0.50 x 0.40 x 0.40 mm
θ range for data collection	2.12 to 59.99°
Limiting indices	0 ≤ h ≤ 11, -16 ≤ k ≤ 16, -23 ≤ l ≤ 23
Scan type	ω-scans
Reflections collected	10122
Independent reflections	9529 ($R_{\text{int}} = 0.0457$)
Observed reflections [F>4σ(F)]	5309
Absorption correction	None
Structure solution method	Direct
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8229 / 219 / 815
Goodness-of-fit on F ²	1.066
Final R indices [F>4σ(F)]	R1 = 0.0836, wR2 = 0.2191
R indices (all data)	R1 = 0.1420, wR2 = 0.2854
Extinction coefficient	0.0010(2)
Largest diff. peak and hole	0.511 and -0.325 eÅ ⁻³
Mean and maximum shift/error	0.000 and -0.001

Table 2. Atomic coordinates [$\times 10^4$], equivalent isotropic displacement parameters [$\text{\AA}^2 \times 10^3$] and site occupancy factors for 7-H·2PF₆. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U(eq)	sof
O(1)	6601 (4)	4772 (3)	3750 (2)	77 (1)	1
C(2)	7904 (7)	4573 (7)	3880 (3)	99 (2)	1
C(3)	8794 (8)	5035 (9)	3465 (4)	128 (4)	1
O(4)	8815 (4)	4866 (4)	2811 (2)	100 (2)	1
C(5)	9727 (7)	5347 (7)	2440 (4)	103 (2)	1
C(6)	9654 (7)	5339 (7)	1742 (4)	108 (3)	1
O(7)	8556 (5)	5898 (4)	1551 (2)	93 (1)	1
C(8)	8553 (9)	5992 (8)	878 (4)	122 (3)	1
C(9)	7431 (10)	6651 (7)	686 (4)	119 (3)	1
O(10)	6321 (5)	6209 (4)	778 (2)	97 (1)	1
C(11)	5131 (11)	6621 (8)	611 (4)	95 (3)	0.75
C(12)	4856 (12)	7540 (9)	419 (5)	115 (4)	0.75
C(13)	3662 (17)	7905 (11)	219 (8)	168 (12)	0.75
C(14)	2751 (15)	7359 (13)	230 (8)	173 (9)	0.75
C(15)	3025 (11)	6419 (10)	415 (6)	132 (5)	0.75
C(16)	4205 (10)	6059 (10)	619 (5)	87 (3)	0.75
O(17)	4547 (6)	5173 (6)	813 (3)	89 (2)	0.75
C(18)	3675 (10)	4511 (9)	770 (4)	92 (3)	0.75
C(19)	4275 (11)	3630 (8)	1033 (4)	104 (3)	0.75
O(20)	4138 (5)	3498 (4)	1726 (2)	79 (2)	0.75
C(11')	5465 (24)	6918 (18)	524 (19)	109 (16)	0.25
C(12')	5589 (25)	7819 (18)	314 (15)	103 (10)	0.25
C(13')	4527 (32)	8431 (18)	132 (21)	170 (23)	0.25
C(14')	3362 (28)	8133 (20)	149 (23)	107 (15)	0.25
C(15')	3245 (26)	7226 (21)	351 (25)	209 (43)	0.25
C(16')	4296 (26)	6609 (16)	528 (18)	104 (14)	0.25
O(17')	4194 (34)	5748 (22)	752 (21)	128 (17)	0.25
C(18')	3276 (38)	5194 (24)	683 (16)	131 (15)	0.25
C(19')	3480 (79)	4269 (26)	995 (15)	290 (63)	0.25
O(20')	3218 (38)	4149 (18)	1666 (12)	178 (13)	0.25
C(21)	2945 (8)	3282 (6)	1987 (4)	107 (2)	1
C(22)	2918 (8)	3055 (6)	2664 (4)	106 (3)	1
O(23)	3116 (4)	3796 (3)	2962 (2)	82 (1)	1
C(24)	2810 (7)	3654 (5)	3644 (3)	86 (2)	1
C(25)	2892 (6)	4503 (5)	3912 (3)	79 (2)	1
O(26)	4213 (4)	4628 (3)	3836 (2)	71 (1)	1
C(27)	4496 (6)	5338 (4)	4107 (2)	66 (1)	1
C(28)	3609 (6)	5978 (5)	4409 (3)	80 (2)	1
C(29)	4026 (8)	6665 (5)	4661 (3)	91 (2)	1
C(30)	5281 (9)	6725 (5)	4630 (3)	93 (2)	1
C(31)	6193 (7)	6095 (5)	4340 (3)	84 (2)	1
C(32)	5791 (6)	5410 (4)	4076 (2)	68 (1)	1
C(33)	3178 (25)	7438 (15)	4886 (14)	132 (9)	0.35
O(34)	3497 (26)	8188 (15)	4903 (13)	171 (9)	0.35
C(33')	5576 (36)	7513 (20)	4857 (22)	147 (15)	0.25
O(34')	4679 (33)	8091 (19)	4977 (15)	152 (10)	0.25
C(33'')	3054 (31)	8862 (16)	90 (18)	117 (11)	0.25
O(34'')	3634 (30)	9466 (18)	72 (15)	149 (10)	0.25
C(33*)	2204 (38)	8749 (26)	-59 (31)	126 (20)	0.15
O(34*)	2283 (40)	9555 (24)	-197 (21)	126 (13)	0.15
N(40)	5786 (5)	4319 (3)	2563 (2)	63 (1)	1
C(41)	6795 (6)	3578 (4)	2348 (3)	78 (2)	1
C(42)	6661 (5)	2659 (4)	2721 (3)	70 (2)	1

C(43)	7026 (6)	1886 (4)	2421 (3)	81 (2)	1
C(44)	6936 (7)	1024 (5)	2753 (4)	90 (2)	1
C(45)	6495 (6)	893 (4)	3389 (4)	81 (2)	1
C(46)	6148 (7)	1671 (5)	3700 (4)	99 (2)	1
C(47)	6247 (7)	2546 (5)	3371 (4)	92 (2)	1
C(48)	6352 (8)	-48 (5)	3766 (5)	106 (2)	1
C(49)	7154 (10)	-219 (6)	4318 (5)	131 (3)	1
C(50)	6739 (12)	-813 (6)	3338 (6)	147 (4)	1
C(51)	4954 (9)	-63 (8)	3998 (6)	166 (5)	1
C(52)	5824 (6)	5177 (4)	2114 (3)	70 (2)	1
C(53)	4974 (5)	5984 (4)	2379 (2)	62 (1)	1
C(54)	5491 (6)	6639 (4)	2619 (3)	76 (2)	1
C(55)	4719 (6)	7357 (4)	2885 (3)	76 (2)	1
C(56)	3411 (6)	7435 (4)	2908 (3)	65 (1)	1
C(57)	2866 (6)	6791 (4)	2665 (3)	71 (2)	1
C(58)	3650 (6)	6074 (4)	2405 (3)	68 (1)	1
C(59)	2582 (7)	8215 (4)	3226 (3)	76 (2)	1
P(60)	1973 (2)	9204 (1)	2703 (1)	67 (1)	1
C(61)	1348 (4)	10010 (3)	3830 (2)	89 (2)	1
C(62)	782 (5)	10721 (3)	4177 (2)	100 (2)	1
C(63)	31 (5)	11476 (3)	3880 (2)	97 (2)	1
C(64)	-153 (5)	11520 (3)	3236 (2)	100 (2)	1
C(65)	413 (4)	10809 (3)	2889 (2)	88 (2)	1
C(66)	1164 (4)	10053 (2)	3186 (2)	68 (1)	1
C(67)	3532 (4)	10517 (3)	2267 (2)	90 (2)	1
C(68)	4566 (5)	10857 (3)	1898 (3)	112 (3)	1
C(69)	5334 (4)	10332 (4)	1464 (3)	115 (3)	1
C(70)	5069 (5)	9469 (4)	1401 (2)	119 (3)	1
C(71)	4035 (5)	9129 (3)	1771 (2)	95 (2)	1
C(72)	3266 (4)	9653 (3)	2204 (2)	71 (2)	1
C(73)	875 (6)	9332 (5)	1576 (2)	159 (5)	1
C(74)	-21 (8)	9156 (7)	1200 (3)	201 (7)	1
C(75)	-906 (7)	8577 (6)	1458 (4)	188 (7)	1
C(76)	-894 (5)	8173 (5)	2092 (4)	158 (5)	1
C(77)	1 (5)	8348 (4)	2468 (3)	105 (2)	1
C(78)	886 (4)	8928 (4)	2210 (2)	84 (2)	1
P(10)	9605 (2)	7068 (1)	4544 (1)	74 (1)	1
F(11)	9185 (5)	6089 (3)	4710 (2)	118 (2)	1
F(12)	8666 (5)	7283 (4)	3995 (2)	123 (2)	1
F(13)	8519 (5)	7456 (4)	5037 (3)	134 (2)	1
F(14)	10537 (6)	6831 (4)	5071 (3)	149 (2)	1
F(15)	10686 (4)	6693 (3)	4022 (2)	120 (2)	1
F(16)	9989 (5)	8061 (3)	4358 (3)	134 (2)	1
P(20)	10150 (2)	2567 (2)	1005 (1)	109 (1)	1
F(21)	9469 (8)	1713 (5)	1210 (4)	198 (3)	1
F(22)	8850 (8)	3164 (7)	949 (4)	214 (4)	1
F(23)	10030 (8)	2781 (5)	1716 (3)	176 (3)	1
F(24)	11468 (8)	1983 (7)	1096 (5)	226 (4)	1
F(25)	10250 (7)	2402 (5)	291 (2)	167 (3)	1
F(26)	10875 (8)	3426 (5)	813 (3)	177 (3)	1
O(80)	2634 (23)	10954 (17)	-84 (12)	116 (7)	0.25

Table 3. Bond Lengths [Å] and angles [°] for 7-H·2PF₆.

O(1)-C(32)	1.379(7)	O(1)-C(2)	1.422(8)
C(2)-C(3)	1.404(12)	C(3)-O(4)	1.439(9)
O(4)-C(5)	1.396(9)	C(5)-C(6)	1.491(11)
C(6)-O(7)	1.388(9)	O(7)-C(8)	1.409(9)
C(8)-C(9)	1.478(13)	C(9)-O(10)	1.423(10)
O(10)-C(11')	1.37(2)	O(10)-C(11)	1.379(11)
C(11)-C(12)	1.366(13)	C(11)-C(16)	1.39(2)
C(12)-C(13)	1.39(2)	C(13)-C(14)	1.36(2)
C(13)-C(33'')	1.47(2)	C(14)-C(15)	1.39(2)
C(15)-C(16)	1.379(13)	C(16)-O(17)	1.33(2)
O(17)-C(18)	1.478(11)	C(18)-C(19)	1.43(2)
C(19)-O(20)	1.443(10)	O(20)-C(21)	1.388(9)
C(11')-C(12')	1.38(2)	C(11')-C(16')	1.39(2)
C(12')-C(13')	1.39(2)	C(13')-C(14')	1.38(2)
C(14')-C(15')	1.38(2)	C(14')-C(33*)	1.49(2)
C(15')-C(16')	1.38(2)	C(16')-O(17')	1.32(2)
O(17')-C(18')	1.41(2)	C(18')-C(19')	1.44(4)
C(19')-O(20')	1.40(2)	O(20')-C(21)	1.43(2)
C(21)-C(22)	1.422(11)	C(22)-O(23)	1.403(8)
O(23)-C(24)	1.432(7)	C(24)-C(25)	1.477(9)
C(25)-O(26)	1.434(7)	O(26)-C(27)	1.362(7)
C(27)-C(32)	1.391(8)	C(27)-C(28)	1.395(8)
C(28)-C(29)	1.374(10)	C(29)-C(30)	1.345(11)
C(29)-C(33)	1.44(2)	C(30)-C(31)	1.387(10)
C(30)-C(33'')	1.42(2)	C(31)-C(32)	1.377(9)
C(33)-O(34)	1.23(2)	C(33')-O(34')	1.21(2)
C(33'')-O(34'')	1.17(2)	C(33*)-O(34*)	1.21(2)
N(40)-C(52)	1.484(7)	N(40)-C(41)	1.490(7)
C(41)-C(42)	1.499(9)	C(42)-C(43)	1.374(9)
C(42)-C(47)	1.385(9)	C(43)-C(44)	1.386(10)
C(44)-C(45)	1.366(10)	C(45)-C(46)	1.392(10)
C(45)-C(48)	1.532(10)	C(46)-C(47)	1.402(10)
C(48)-C(49)	1.498(12)	C(48)-C(51)	1.510(12)
C(48)-C(50)	1.531(13)	C(52)-C(53)	1.515(8)
C(53)-C(54)	1.378(8)	C(53)-C(58)	1.388(8)
C(54)-C(55)	1.382(9)	C(55)-C(56)	1.372(9)
C(56)-C(57)	1.384(8)	C(56)-C(59)	1.526(8)
C(57)-C(58)	1.381(8)	C(59)-P(60)	1.795(6)
P(60)-C(78)	1.778(4)	P(60)-C(66)	1.787(3)
P(60)-C(72)	1.787(3)	C(61)-C(62)	1.39
C(61)-C(66)	1.39	C(62)-C(63)	1.39
C(63)-C(64)	1.39	C(64)-C(65)	1.39
C(65)-C(66)	1.39	C(67)-C(68)	1.39
C(67)-C(72)	1.39	C(68)-C(69)	1.39
C(69)-C(70)	1.39	C(70)-C(71)	1.39
C(71)-C(72)	1.39	C(73)-C(74)	1.39
C(73)-C(78)	1.39	C(74)-C(75)	1.39
C(75)-C(76)	1.39	C(76)-C(77)	1.39
C(77)-C(78)	1.39		
C(32)-O(1)-C(2)	118.5(5)	C(3)-C(2)-O(1)	117.6(7)
C(2)-C(3)-O(4)	112.0(8)	C(5)-O(4)-C(3)	107.6(6)
O(4)-C(5)-C(6)	111.0(7)	O(7)-C(6)-C(5)	110.1(6)
C(6)-O(7)-C(8)	110.8(6)	O(7)-C(8)-C(9)	109.5(8)
O(10)-C(9)-C(8)	109.9(7)	C(11')-O(10)-C(9)	98.9(12)
C(11)-O(10)-C(9)	124.4(8)	C(12)-C(11)-O(10)	122.7(10)
C(12)-C(11)-C(16)	119.9(9)	O(10)-C(11)-C(16)	117.3(9)
C(11)-C(12)-C(13)	119.9(10)	C(14)-C(13)-C(12)	120.4(10)
C(14)-C(13)-C(33'')	108(2)	C(12)-C(13)-C(33'')	131(2)

C(13)-C(14)-C(15)	120.3(11)	C(16)-C(15)-C(14)	119.3(10)
O(17)-C(16)-C(15)	123.6(9)	O(17)-C(16)-C(11)	116.2(9)
C(15)-C(16)-C(11)	120.1(10)	C(16)-O(17)-C(18)	119.8(8)
C(19)-C(18)-O(17)	107.0(8)	C(18)-C(19)-O(20)	113.0(8)
C(21)-O(20)-C(19)	113.0(7)	O(10)-C(11')-C(12')	131(2)
O(10)-C(11')-C(16')	109(2)	C(12')-C(11')-C(16')	120.4(12)
C(11')-C(12')-C(13')	119.7(12)	C(14')-C(13')-C(12')	120.1(12)
C(13')-C(14')-C(15')	120.0(12)	C(13')-C(14')-C(33*)	123(3)
C(15')-C(14')-C(33*)	117(3)	C(16')-C(15')-C(14')	120.4(12)
O(17')-C(16')-C(15')	122(2)	O(17')-C(16')-C(11')	119(2)
C(15')-C(16')-C(11')	119.3(11)	C(16')-O(17')-C(18')	131(3)
O(17')-C(18')-C(19')	116(3)	O(20')-C(19')-C(18')	116(3)
C(19')-O(20')-C(21)	120(2)	O(20)-C(21)-C(22)	110.5(7)
C(22)-C(21)-O(20')	122.5(13)	O(23)-C(22)-C(21)	111.6(7)
C(22)-O(23)-C(24)	112.2(5)	O(23)-C(24)-C(25)	109.0(5)
O(26)-C(25)-C(24)	107.5(5)	C(27)-O(26)-C(25)	116.1(4)
O(26)-C(27)-C(32)	115.8(5)	O(26)-C(27)-C(28)	125.7(6)
C(32)-C(27)-C(28)	118.5(6)	C(29)-C(28)-C(27)	119.7(7)
C(30)-C(29)-C(28)	121.2(7)	C(30)-C(29)-C(33)	114.9(13)
C(28)-C(29)-C(33)	123.3(14)	C(29)-C(30)-C(31)	120.7(7)
C(29)-C(30)-C(33')	115(2)	C(31)-C(30)-C(33')	124(2)
C(32)-C(31)-C(30)	118.9(7)	C(31)-C(32)-O(1)	124.1(6)
C(31)-C(32)-C(27)	121.0(6)	O(1)-C(32)-C(27)	114.8(5)
O(34)-C(33)-C(29)	124(2)	O(34')-C(33')-C(30)	116(3)
O(34")-C(33")-C(13)	121(3)	O(34*)-C(33*)-C(14')	117(3)
C(52)-N(40)-C(41)	110.8(4)	N(40)-C(41)-C(42)	112.9(5)
C(43)-C(42)-C(47)	117.8(6)	C(43)-C(42)-C(41)	119.3(6)
C(47)-C(42)-C(41)	122.9(6)	C(42)-C(43)-C(44)	120.9(7)
C(45)-C(44)-C(43)	122.6(7)	C(44)-C(45)-C(46)	116.9(6)
C(44)-C(45)-C(48)	123.9(7)	C(46)-C(45)-C(48)	119.2(7)
C(45)-C(46)-C(47)	121.0(7)	C(42)-C(47)-C(46)	120.7(7)
C(49)-C(48)-C(51)	111.1(9)	C(49)-C(48)-C(50)	109.9(8)
C(51)-C(48)-C(50)	106.2(9)	C(49)-C(48)-C(45)	109.6(7)
C(51)-C(48)-C(45)	108.4(7)	C(50)-C(48)-C(45)	111.5(8)
N(40)-C(52)-C(53)	111.9(4)	C(54)-C(53)-C(58)	117.8(5)
C(54)-C(53)-C(52)	120.9(6)	C(58)-C(53)-C(52)	121.3(5)
C(53)-C(54)-C(55)	121.2(6)	C(56)-C(55)-C(54)	120.2(5)
C(55)-C(56)-C(57)	119.8(6)	C(55)-C(56)-C(59)	119.1(5)
C(57)-C(56)-C(59)	121.1(6)	C(58)-C(57)-C(56)	119.3(6)
C(57)-C(58)-C(53)	121.6(5)	C(56)-C(59)-P(60)	116.8(4)
C(78)-P(60)-C(66)	109.4(2)	C(78)-P(60)-C(72)	109.2(2)
C(66)-P(60)-C(72)	108.9(2)	C(78)-P(60)-C(59)	111.1(3)
C(66)-P(60)-C(59)	108.3(2)	C(72)-P(60)-C(59)	109.9(3)
C(62)-C(61)-C(66)	120.0	C(61)-C(62)-C(63)	120.0
C(64)-C(63)-C(62)	120.0	C(63)-C(64)-C(65)	120.0
C(64)-C(65)-C(66)	120.0	C(65)-C(66)-C(61)	120.0
C(65)-C(66)-P(60)	118.1(2)	C(61)-C(66)-P(60)	121.7(2)
C(68)-C(67)-C(72)	120.0	C(67)-C(68)-C(69)	120.0
C(70)-C(69)-C(68)	120.0	C(69)-C(70)-C(71)	120.0
C(70)-C(71)-C(72)	120.0	C(71)-C(72)-C(67)	120.0
C(71)-C(72)-P(60)	120.2(2)	C(67)-C(72)-P(60)	119.7(2)
C(74)-C(73)-C(78)	120.0	C(73)-C(74)-C(75)	120.0
C(76)-C(75)-C(74)	120.0	C(75)-C(76)-C(77)	120.0
C(78)-C(77)-C(76)	120.0	C(77)-C(78)-C(73)	120.0
C(77)-C(78)-P(60)	120.0(3)	C(73)-C(78)-P(60)	119.9(3)

Table 4. Anisotropic displacement parameters [$\text{\AA}^2 \times 10^3$] for 7-H·2PF₆. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [(ha^*)^2U_{11} + \dots + 2hka^*b^*U_{12}]$.

	U11	U22	U33	U23	U13	U12
O(1)	55 (2)	105 (3)	69 (2)	-20 (2)	-1 (2)	-4 (2)
C(2)	71 (4)	158 (7)	61 (3)	-9 (4)	-7 (3)	2 (4)
C(3)	80 (5)	230 (11)	74 (5)	-18 (6)	-9 (4)	-22 (6)
O(4)	74 (3)	152 (5)	71 (3)	-14 (3)	5 (2)	-13 (3)
C(5)	68 (4)	142 (7)	101 (5)	-20 (5)	-5 (4)	-17 (4)
C(6)	75 (5)	148 (7)	95 (5)	-15 (5)	23 (4)	-22 (5)
O(7)	77 (3)	130 (4)	73 (3)	-7 (3)	4 (2)	-31 (3)
C(8)	111 (7)	186 (10)	71 (4)	-1 (5)	18 (4)	-62 (7)
C(9)	152 (9)	130 (7)	86 (5)	14 (5)	-16 (5)	-71 (7)
O(10)	100 (4)	123 (4)	72 (3)	-9 (3)	-10 (3)	-29 (3)
C(11)	114 (10)	125 (9)	41 (4)	-6 (5)	-5 (5)	-9 (9)
C(12)	146 (11)	139 (11)	66 (6)	-18 (6)	-20 (7)	-31 (9)
C(13)	201 (22)	193 (21)	82 (9)	-23 (11)	-46 (12)	84 (21)
C(14)	134 (14)	273 (28)	106 (11)	-46 (14)	-22 (11)	17 (16)
C(15)	114 (11)	181 (15)	97 (8)	-7 (9)	-25 (7)	-10 (10)
C(16)	81 (8)	134 (12)	48 (5)	-5 (7)	-6 (4)	-31 (7)
O(17)	82 (4)	119 (6)	68 (3)	-8 (4)	-14 (3)	-22 (4)
C(18)	84 (7)	151 (11)	56 (5)	-35 (6)	-6 (4)	-46 (7)
C(19)	106 (8)	139 (10)	78 (6)	-49 (6)	11 (5)	-37 (7)
O(20)	75 (4)	105 (4)	65 (3)	-32 (3)	6 (3)	-30 (3)
C(21)	113 (6)	111 (6)	115 (6)	-38 (5)	-22 (5)	-40 (5)
C(22)	106 (6)	114 (6)	113 (6)	-46 (5)	14 (4)	-53 (5)
O(23)	90 (3)	86 (3)	77 (3)	-20 (2)	-1 (2)	-32 (2)
C(24)	73 (4)	103 (5)	81 (4)	-3 (4)	11 (3)	-32 (4)
C(25)	58 (4)	103 (5)	75 (4)	-16 (3)	11 (3)	-22 (3)
O(26)	59 (2)	93 (3)	61 (2)	-15 (2)	5 (2)	-15 (2)
C(27)	65 (4)	81 (4)	50 (3)	-4 (3)	-3 (2)	-7 (3)
C(28)	67 (4)	100 (5)	65 (3)	-8 (3)	3 (3)	2 (3)
C(29)	111 (6)	82 (4)	76 (4)	-14 (3)	-6 (4)	2 (4)
C(30)	119 (7)	82 (4)	79 (4)	-16 (3)	-9 (4)	-13 (4)
C(31)	84 (4)	102 (5)	69 (4)	-17 (3)	-6 (3)	-18 (4)
C(32)	63 (4)	86 (4)	52 (3)	-6 (3)	-5 (2)	-7 (3)
N(40)	61 (3)	63 (3)	62 (3)	-9 (2)	0 (2)	-11 (2)
C(41)	68 (4)	73 (4)	87 (4)	-13 (3)	18 (3)	-8 (3)
C(42)	49 (3)	71 (3)	89 (4)	-14 (3)	3 (3)	-11 (3)
C(43)	72 (4)	78 (4)	93 (4)	-18 (3)	9 (3)	-18 (3)
C(44)	83 (5)	73 (4)	117 (6)	-19 (4)	-7 (4)	-16 (3)
C(45)	65 (4)	63 (3)	114 (5)	-2 (3)	-14 (4)	-9 (3)
C(46)	98 (5)	88 (5)	97 (5)	2 (4)	16 (4)	-1 (4)
C(47)	95 (5)	70 (4)	99 (5)	-13 (3)	15 (4)	7 (3)
C(48)	99 (6)	79 (5)	139 (7)	9 (4)	-24 (5)	-16 (4)
C(49)	139 (8)	103 (6)	154 (8)	19 (6)	-57 (7)	-21 (6)
C(50)	196 (11)	73 (5)	178 (10)	-2 (6)	-39 (9)	-37 (6)
C(51)	102 (7)	159 (10)	220 (13)	73 (9)	-15 (7)	-56 (7)
C(52)	74 (4)	70 (3)	63 (3)	-4 (3)	7 (3)	-15 (3)
C(53)	68 (4)	64 (3)	53 (3)	-4 (2)	0 (2)	-11 (3)
C(54)	71 (4)	82 (4)	80 (4)	-7 (3)	-13 (3)	-22 (3)
C(55)	86 (5)	66 (3)	83 (4)	-11 (3)	-21 (3)	-23 (3)
C(56)	81 (4)	59 (3)	56 (3)	-6 (2)	-1 (3)	-18 (3)
C(57)	65 (4)	67 (3)	83 (4)	-16 (3)	-4 (3)	-12 (3)
C(58)	68 (4)	68 (3)	73 (3)	-12 (3)	-4 (3)	-24 (3)
C(59)	97 (5)	65 (3)	65 (3)	-11 (3)	4 (3)	-14 (3)
P(60)	80 (1)	63 (1)	61 (1)	-11 (1)	-4 (1)	-17 (1)

C(61)	114 (6)	80 (4)	72 (4)	-19 (3)	-12 (4)	-4 (4)
C(62)	110 (6)	109 (6)	86 (5)	-44 (4)	-13 (4)	4 (5)
C(63)	86 (5)	93 (5)	117 (6)	-47 (4)	-9 (4)	-2 (4)
C(64)	86 (5)	86 (5)	127 (6)	-27 (4)	-21 (4)	9 (4)
C(65)	86 (5)	85 (4)	96 (5)	-23 (4)	-21 (4)	-6 (4)
C(66)	69 (4)	65 (3)	74 (3)	-17 (3)	-1 (3)	-11 (3)
C(67)	82 (5)	75 (4)	114 (5)	-8 (4)	-2 (4)	-27 (3)
C(68)	98 (6)	95 (5)	142 (7)	3 (5)	-5 (5)	-36 (5)
C(69)	97 (6)	138 (8)	108 (6)	7 (5)	4 (5)	-47 (5)
C(70)	127 (7)	153 (8)	78 (5)	-13 (5)	22 (5)	-53 (6)
C(71)	121 (6)	98 (5)	70 (4)	-14 (3)	12 (4)	-36 (4)
C(72)	82 (4)	72 (4)	60 (3)	-3 (3)	-7 (3)	-19 (3)
C(73)	148 (9)	264 (15)	92 (6)	-17 (7)	-32 (6)	-101 (10)
C(74)	184 (13)	344 (22)	113 (8)	-46 (11)	-54 (8)	-106 (14)
C(75)	135 (10)	250 (17)	223 (15)	-109 (14)	-59 (11)	-57 (11)
C(76)	100 (7)	136 (8)	262 (16)	-62 (10)	-36 (9)	-44 (6)
C(77)	79 (5)	86 (5)	153 (7)	-16 (5)	-16 (5)	-20 (4)
C(78)	88 (5)	87 (4)	83 (4)	-23 (3)	-3 (3)	-27 (4)
P(10)	65 (1)	75 (1)	79 (1)	-7 (1)	2 (1)	-10 (1)
F(11)	146 (4)	83 (3)	123 (3)	12 (2)	-9 (3)	-36 (3)
F(12)	118 (4)	126 (4)	126 (4)	10 (3)	-43 (3)	-23 (3)
F(13)	121 (4)	131 (4)	125 (4)	-17 (3)	49 (3)	10 (3)
F(14)	142 (4)	161 (5)	151 (5)	-36 (4)	-77 (4)	16 (4)
F(15)	95 (3)	129 (4)	128 (4)	-37 (3)	25 (3)	0 (3)
F(16)	138 (4)	90 (3)	177 (5)	-16 (3)	15 (4)	-53 (3)
P(20)	110 (2)	139 (2)	84 (1)	-13 (1)	8 (1)	-47 (2)
F(21)	245 (8)	189 (7)	177 (6)	-34 (5)	59 (6)	-130 (6)
F(22)	173 (7)	264 (10)	203 (8)	-65 (7)	-56 (6)	31 (6)
F(23)	221 (7)	221 (7)	93 (3)	-41 (4)	24 (4)	-66 (6)
F(24)	158 (6)	264 (10)	267 (10)	-117 (8)	-63 (6)	40 (6)
F(25)	183 (6)	253 (8)	89 (3)	-41 (4)	20 (3)	-107 (5)
F(26)	224 (7)	198 (7)	133 (5)	-25 (4)	22 (5)	-123 (6)

Table 5. Hydrogen coordinates (x 10⁴), isotropic displacement parameters (Å² x 10³) and site occupancy factors for 7-H·2PF₆.

	x	y	z	U(eq)	sof
H(2A)	7948 (7)	4706 (7)	4312 (3)	119	1
H(2B)	8175 (7)	3921 (7)	3876 (3)	119	1
H(3A)	9641 (8)	4837 (9)	3606 (4)	154	1
H(3B)	8580 (8)	5687 (9)	3489 (4)	154	1
H(5A)	10576 (7)	5071 (7)	2549 (4)	124	1
H(5B)	9586 (7)	5975 (7)	2536 (4)	124	1
H(6A)	10404 (7)	5554 (7)	1497 (4)	130	1
H(6B)	9640 (7)	4718 (7)	1657 (4)	130	1
H(8A)	8516 (9)	5402 (8)	743 (4)	146	1
H(8B)	9334 (9)	6207 (8)	672 (4)	146	1
H(9A)	7298 (10)	7157 (7)	941 (4)	143	1
H(9B)	7584 (10)	6896 (7)	237 (4)	143	1
H(12A)	5467 (12)	7920 (9)	423 (5)	137	0.75
H(13A)	3469 (17)	8547 (11)	75 (8)	202	0.50
H(14A)	1941 (15)	7613 (13)	115 (8)	208	0.75
H(15A)	2418 (11)	6040 (10)	400 (6)	158	0.75
H(18A)	2854 (10)	4677 (9)	1011 (4)	110	0.75
H(18B)	3536 (10)	4504 (9)	326 (4)	110	0.75
H(19A)	5179 (11)	3557 (8)	880 (4)	125	0.75
H(19B)	3902 (11)	3160 (8)	879 (4)	125	0.75
H(12B)	6381 (25)	8017 (18)	293 (15)	123	0.25
H(13B)	4604 (32)	9044 (18)	-1 (21)	204	0.25
H(14B)	2636 (28)	8565 (20)	24 (23)	128	0.10
H(15B)	2454 (26)	7028 (21)	368 (25)	251	0.25
H(18C)	3247 (38)	5176 (24)	229 (16)	158	0.25
H(18D)	2442 (38)	5485 (24)	850 (16)	158	0.25
H(19C)	2952 (79)	3915 (26)	817 (15)	348	0.25
H(19D)	4367 (79)	4015 (26)	888 (15)	348	0.25
H(21A)	2760 (8)	2768 (6)	1798 (4)	128	0.75
H(21B)	2292 (8)	3801 (6)	1887 (4)	128	0.75
H(21C)	3417 (8)	2760 (6)	1803 (4)	128	0.25
H(21D)	2074 (8)	3317 (6)	1897 (4)	128	0.25
H(22A)	2095 (8)	2872 (6)	2835 (4)	127	1
H(22B)	3577 (8)	2540 (6)	2762 (4)	127	1
H(24A)	3405 (7)	3153 (5)	3831 (3)	103	1
H(24B)	1952 (7)	3496 (5)	3744 (3)	103	1
H(25A)	2384 (6)	5021 (5)	3687 (3)	94	1
H(25B)	2569 (6)	4451 (5)	4363 (3)	94	1
H(28A)	2739 (6)	5940 (5)	4440 (3)	96	1
H(29A)	3430 (8)	7096 (5)	4855 (3)	109	0.65
H(30A)	5541 (9)	7194 (5)	4806 (3)	112	0.75
H(31A)	7060 (7)	6134 (5)	4323 (3)	101	1
H(33A)	2334 (25)	7362 (15)	5027 (14)	159	0.35
H(33B)	6411 (36)	7579 (20)	4909 (22)	176	0.25
H(33C)	2192 (31)	8987 (16)	22 (18)	141	0.25
H(33D)	1446 (38)	8523 (26)	-81 (31)	151	0.15
H(40A)	5043 (33)	4144 (45)	2503 (34)	94 (23)	1
H(40B)	5756 (55)	4401 (38)	2978 (8)	69 (17)	1
H(41A)	7629 (6)	3731 (4)	2393 (3)	94	1
H(41B)	6752 (6)	3544 (4)	1897 (3)	94	1
H(43A)	7339 (6)	1941 (4)	1989 (3)	98	1
H(44A)	7186 (7)	515 (5)	2535 (4)	109	1
H(46A)	5845 (7)	1610 (5)	4133 (4)	119	1
H(47A)	6032 (7)	3055 (5)	3591 (4)	111	1
H(49A)	8037 (10)	-206 (6)	4158 (5)	197	1

H(49B)	7061 (10)	-807 (6)	4554 (5)	197	1
H(49C)	6879 (10)	248 (6)	4595 (5)	197	1
H(50A)	6221 (12)	-700 (6)	2985 (6)	220	1
H(50B)	6613 (12)	-1390 (6)	3584 (6)	220	1
H(50C)	7625 (12)	-831 (6)	3175 (6)	220	1
H(51A)	4461 (9)	48 (8)	3636 (6)	249	1
H(51B)	4665 (9)	404 (8)	4274 (6)	249	1
H(51C)	4846 (9)	-651 (8)	4232 (6)	249	1
H(52A)	5547 (6)	5095 (4)	1708 (3)	84	1
H(52B)	6699 (6)	5307 (4)	2033 (3)	84	1
H(54A)	6377 (6)	6597 (4)	2603 (3)	92	1
H(55A)	5087 (6)	7788 (4)	3048 (3)	91	1
H(57A)	1980 (6)	6841 (4)	2676 (3)	85	1
H(58A)	3280 (6)	5641 (4)	2244 (3)	82	1
H(59A)	3081 (7)	8412 (4)	3521 (3)	92	1
H(59B)	1859 (7)	7973 (4)	3479 (3)	92	1
H(61A)	1851 (4)	9504 (3)	4029 (2)	106	1
H(62A)	905 (7)	10691 (5)	4608 (2)	120	1
H(63A)	-348 (7)	11952 (4)	4112 (3)	116	1
H(64A)	-655 (6)	12025 (3)	3037 (3)	120	1
H(65A)	290 (7)	10838 (4)	2458 (2)	106	1
H(67A)	3018 (4)	10868 (3)	2557 (2)	108	1
H(68A)	4743 (7)	11434 (3)	1940 (4)	134	1
H(69A)	6026 (6)	10559 (5)	1217 (4)	138	1
H(70A)	5583 (7)	9118 (5)	1111 (3)	142	1
H(71A)	3857 (7)	8551 (3)	1728 (3)	114	1
H(73A)	1467 (6)	9720 (5)	1403 (2)	191	1
H(74A)	-28 (12)	9427 (9)	776 (3)	241	1
H(75A)	-1505 (9)	8459 (9)	1207 (5)	226	1
H(76A)	-1486 (8)	7785 (6)	2265 (6)	189	1
H(77A)	9 (8)	8078 (6)	2892 (3)	126	1